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Abstract

Natural convection from a vertical electrically-heated plate (90 mm x 79 mm) to both Newtonian and non-Newtonian
fluids has been studied experimentally for conditions of constant surface heat flux. For Newtonian fluids, a very wide
range of viscosities (10 000-fold), of densities (1000-fold), and of Prandtl numbers (2500-fold) has been covered. The
effect of shear-thinning non-Newtonian behaviour has been investigated using fluids with power-law indices from 0.48
to 0.81. Over this very wide range of conditions, the measured vertical temperature profile at the surface of the plate,
and its dependence on the heat flux, has been found to conform well to theoretical predictions. The values of the
coefficients in the well-established relations between Nusselt, Grashof and Prandtl numbers have then been evaluated
and they have been shown to compare well with theoretical predictions and experimental results of other workers.

© 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

A function of physical properties defined by equation
(10)

Ann  function of physical properties and rheology
defined by equation (20)

B function of physical properties defined by equation
(1)

B\ function of physical properties and rheology
defined by equation (21)

C coefficient in equation (7) for Newtonian fluid

Cun  coefficient in equation (17) for power-law fluid

C, specific heat capacity of fluid at constant pressure [J
kg ' K]

¢ coefficient in equation (3) for Newtonian fluid

enn  coefficient in equation (14) for power-law fluid

g acceleration due to gravity [m s—?]

Gr, Grashof number defined by equation (2)

Gr¥ Grashof number defined by equation (5)
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Graww  Grashof number defined by equation (13) for
power-law fluid

Griyw Grashof number defined by equation (15) for
power-law fluid

K consistency coefficient for power-law fluid [Pa s”]

k thermal conductivity of fluid [W m~' K /]

L total length of plate in vertical direction [m]

n flow behaviour index for power-law fluid

Nu, Nusselt number, g.x/k AT (constant AT)

Nu¥ Nusselt number, g,x/kAT (constant g,)

Pr Prandtl number for Newtonian fluid

Pryy  Prandtl number for power-law fluid defined by
equation (12)

gs heat flux at surface [W m~%

AT temperature difference between surface and bulk
fluid [K]

x distance from leading edge of surface [m].

Greek symbols

B coeflicient of cubical expansion of fluid [K ™/
viscosity of fluid [Pa s]

density of fluid [kg m ™)

shear stress [Pa]

shear rate [s'].

= A =
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1. Introduction

In a recent paper [1], results were reported of a study
of heat transfer by forced convection between a vertical
surface and a fluid flowing parallel to it, for conditions
of constant surface heat flux. Point values of surface
temperatures and heat transfer coefficients were com-
puted using a finite-element solution of the equations for
laminar flow and heat transfer within the whole flow
domain. In a parallel programme of experimental work,
a small electrically-heated heat transfer element was
mounted vertically in a tube and a stream of fluid was
passed over it in an upwards direction. The surface tem-
perature profiles, measured by means of an array of ther-
mocouples, were in excellent agreement with the com-
puted values. This provided strong evidence of the
reliability of both the experimental method and the com-
putational technique.

The experimental method has now been applied to the
measurement of temperature profiles for heat transfer by
laminar natural convection to fluids covering a very wide
range of physical properties (including air, low and high
viscosity Newtonian liquids, and shear-thinning polymer
solutions). The experimentally determined heat transfer
coefficients have been correlated using the standard
dimensionless groups (Nusselt, Grashof and Prandtl),
suitably modified for application to conditions of con-
stant heat flux, for fluids exhibiting both Newtonian and
power-law non-Newtonian rheology.

2. Experimental work
2.1. Apparatus and procedure

Natural convection experiments were carried out with
fluid contained in a plastic tank (430 x270 x280 mm
tall). The element was suspended centrally in the tank
with its surface parallel to the long dimension of the tank,
so that the distance between the element and the wall was
several times the thickness of the boundary layers. The
tank either contained air, or was filled with liquid to
within 30 mm of the top, leaving 80 mm of free space
above and below the element. The temperature of the
bulk fluid was measured using a thermocouple level with
the element, but sufficiently far apart for it to be situated
outside the boundary layers.

The element itself, the construction of which is
described in detail elsewhere [2], consisted of a 90 x 79
mm support to which was stuck a continuous strip of
stainless steel heating foil (0.05 mm thick). The vertical
temperature distribution in the foil on one side of the
element was measured by means of chromel-alumel ther-
mocouples spot-welded to the back of the foil. Leads
for supplying the current were attached to the foil, and
separate connections permitted the measurement of the

voltage drop across the element. The heating current was
supplied from the AC mains via a step-down transformer,
and was controlled by a Variac transformer. The power
supplied was calculated from the potential drop across
the element and its electrical resistance. The arrangement
of the thermocouples on the element is shown in Fig. 1.
From a calibration of the resistance over the range of
temperatures used in the experiments, it was established
that local variations in heat flux over the surface of the
foil were not significant. Heat transfer by conduction
along the length of the foil accounted for only about
0.1% of the heat transferred to the fluid.

On starting an experiment, the current was set to give
the desired heat flux and thermocouple readings were
taken as soon as stable conditions had been reached. The
time for stabilisation ranged from about 2 min with water
to 15 min with viscous liquids. The maximum heat flux
used was 15 kW m~2 and the corresponding heat input
of 0.22 kW resulted in a temperature rise of the bulk fluid
of about 1°C over a 30 min period. Thermocouples were
read in sequence, starting immediately after the power
supply had been switched on, and when the steady state
had been reached the temperatures were recorded.

Experiments were carried out with air and three New-
tonian liquids and with four non-Newtonian liquids ex-
hibiting power-law behaviour. The rheological properties
of the non-Newtonian liquids were measured using a
Weissenberg rheometer, as described previously [2]. The
relevant physical properties are given in Table 1 for the
Newtonian fluids, and in Table 2 for the non-Newtonian
fluids. These refer to the initial bulk temperature for the
experiments (in all cases 20 +2°C). Most other workers
have used this basis for physical properties as there is
no satisfactory way of taking account of the effect of
variations with temperature within the boundary layers.

For each fluid, temperature distributions along the
surface of the plate were recorded for a series of heat
fluxes. Local values of the film heat transfer coefficient
for the fluid were obtained by dividing the heat flux by
the temperature difference between the foil and the bulk
liquid.

3. Representation and interpretation of experimental
results

3.1. Newtonian fluids

For Newtonian fluids, dimensional analysis of heat
transfer by natural convection identifies the relevant
dimensionless groups as the Nusselt, Prandtl and
Grashof numbers. For a point situated a distance x from
the bottom of a vertical plate:

Nu, = f(Gr, Pr) (M
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Fig. 1. Arrangements of thermocouples on heat transfer element.

For a constant temperature difference AT between the
surface and the fluid, the Grashof number is given by:

_ (B9)ATp’x*

2

u
By application of classical boundary layer theory and
making assumptions concerning the velocity and tem-
perature profiles within the boundary layer, several wor-
kers have established that the relation is of the form:

Gr, 2)

Nu, = ¢(Gr,Pr)*** &)

For instance, Eckert [3], in a theoretical analysis,
assumed that the velocity and thermal boundary layer
thicknesses were equal and that the velocity and tem-
perature profiles could be represented by parabolic func-
tions. He expressed equation (3) in the form:

Pr i|0.25(GVXPr)O'25 @)

Nitg = 0.508 |:0.952+Pr
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Table 1
Newtonian fluids—experimental results

Air Water 54% Glycerol 84% Glycerol
p 1.207 998 1130 1221
I 0.0000182 0.0010 0.015 0.210
C, 1006 4182 3276 2707
k 0.0256 0.597 0.408 0.310
p 3.23x1073 2.07x107* 420%x10* 4.59%x10*
Pr 0.71 7.01 120 1800

2 3

L (ﬁg:k G 4228 1.80 x 10° 7.8 % 10° 2,58 x 10°
(GriPr)max 1.94 x 107 4.26 x 10° 1.73x 10" 1.94 x 10"
A 0.472 0.0141 0.0264 0.0520
B 0.833 0.0230 0.0405 0.0876
Confidence limits +5.3% +2.2% +2.8% +0.6%
C=A/B 0.57 0.61 0.65 0.60
C (Churchill) 0.545 0.590 0.623 0.629

A = [p/(Bg)p*C,1°%, B = AT/x*?¢*%.

(Gr¥Pr)yax = maximum value of the group based on the highest value of the surface heat flux for each material and the distance from

the leading edge of the furthest downstream thermocouple (0.0818 m).

All figures in the Table are in basic SI units (kg, m, s, K, N, J, W) and units derived from them.

Thus for Pr of the order of unity (for gases), ¢ is a weak
function of Pr. For high values of Pr, ¢ approaches a
constant value of 0.508.

Ostrach [4] has also carried out a numerical solution
of the boundary layer equations for Pr in the range 0.01—
1000 and confirms the value of the exponent in equation
(4) as 0.25. There have also been numerous experimental
results in support of this value.

For a uniform surface heat flux ¢,, temperature (and
hence AT) is a function of position x. A modified form
of the Grashof number may be defined in terms of ¢, as
opposed to AT, to give

2.4
Gre = PP x ®)
wk
and:
ZC 5 4
Gripr = P94 Cox ©)
ke
The counterpart to equation (3) is then:
Nu¥ = C(Gr#Pr)°? )

Sparrow [5] has given an analytical solution for this
case; it is similar in form to that of Eckert, equation (4),
and C is also shown to be a weak function of Pr:

Pr 0.2
* — - %P, 0.20
Nu¥=0.615 |:O.8+Pr:| (GrPr)”=°,

0.01 < Pr <1000 (8)

Thus C approaches a constant value of 0.615 at high
values of Pr.

Re-arranging equation (7):

AT 02
0.2 ,0.8 = |: IL: %:| (9)
x™gg (Bg)p* Cok

Thus, for each value of g, a plot of AT against x"?
should be linear, if the physical properties of the fluid can
be taken as constant over the temperature range involved.
In all cases, the experimental points are well represented
by a straight line passing through the origin (Figs 2-5).
A few experimental points have been omitted for low
values of Gr Pr (< ca 10*) where the effects of pure ther-
mal conduction become significant and where the
assumptions in the boundary layer theory are no longer
valid. For very high values (> ca 10°), turbulence may
develop in the boundary layer and, in addition, tem-
perature variations in the fluid may be very high; the
corresponding points were therefore not taken into
account. From equation (9), it is seen that the slopes
should be inversely proportional to ¢2*; the values of
AT/x"2¢%® were in all cases found to be constant, within
the limits of confidence quoted in Table 1. Figures 2-5
show plots for air, water and 54 and 84% (w/w) aqueous
glycerol solutions. The linearity of the plots and the near
constancy of the values of AT/x"?¢* implies that neg-
lecting the effect of temperature on the physical properties
of the fluid did not introduce any serious error.

For each of the Newtonian fluids, the value of the
coefficient C was calculated as 4/B where:

e [#Tl (10)
(Bg)p’ Ck?



Table 2
Non-Newtonian fluids—experimental results

Carbopol 1 Carbopol 2 Carbopol 3 Carbopol 4 Water
n 0.475 0.581 0.599 0.807 1.0
K 0.425 0.713 0.330 0.0564 0.0010
" 0.139 0.155 0.158 0.182 0.2
3n+2
3n+1
0.708 0.733 0.737 0.773 0.8
3n+2
1
0.292 0.267 0.263 0.226 0.2
3n+2
P 998 998 998 998 998
C, 4182 4182 4182 4182 4182
k 0.597 0.597 0.597 0.597 0.597
p 2.07x107* 2.07x107* 2.07x107* 2.07x107* 2.07x107*
(GrEanPr" ) vax 7.69 x 10° 9.64 x 10° 5.46 x 10° 8.55x 10° 4.26 % 10°
Axn {ngﬂspl475K—lk1.‘)5(/jg)}—0.292 {Cg 581[)1 7I3K—Ik2.426<ﬁg)}—l|.267 {Cg'599p|'599K7]kZZl](ﬁg)}70263 {Cg.807pl.807K—lk26I4(ﬁg)}—0.26(v {Cpszflkj([)’g)}foz
0.1026 0.0781 0.0758 0.0375 0.0141
B AT AT AT AT AT
NN x().l}‘)q().ﬂlk xl)AlSSqO.T",K xl\,lSXqE\,737 xU 182q9,773 xU qu\S,
0.213 0.155 0.131 0.0585 0.0230
Confidence limits +3.9% +4.9% +9.8% +1.9% +2.2%
Cnn = Ann/Ban 0.49 0.50 0.58 0.64 0.61
Cnn (Dale and Emery) 0.45 0.49 0.50 0.57 0.607
(numerically computed)
Cyy (Tien) 0.73 0.72 0.72 0.70 0.68

1
A = K Int2 B — AT
NN (ﬁg)p””C;kHz” P UNN T, 3n+1

X3n+2 ¢ 3n+2

(GriuwPr*)uax = maximum value of the group based on the highest surface heat flux for the material and the distance from the leading edge of the furthest downstream thermocouple

(0.0818 m).

All figures in the table are in basic SI units (kg, m, s, K, N, J, W) and units derived from them.
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Fig. 4. Experimental results for 54% (w/w) aqueous glycerol.

AT

B = xO.qu.S (1])
Both the physical properties (including Prandtl numbers)
and the experimental results (together with their 95%
confidence limits, as given by Student’s 7-test) are sum-
marised in Table 1. The Grashof number is a function of
both x and ¢, having a zero value at the leading edge
(x =0), and a maximum value over the experimental
domain at the location of the downstream thermocouple
and at the highest heat flux. The maximum value of
Gr¥Pr for each fluid is included in Table 1.

3.2. Non-Newtonian fluids

The rheology of each of the non-Newtonian fluids used
in the experimental programme was well-represented by
the Ostwald-de Waele power-law model {r = K}"} for
shear rates from 0.02 to ca 2 s~' [2], and none of the fluids
was found to exhibit significant elasticity. Inevitably, the
use of this model introduces some inaccuracy as all real
fluids tend towards Newtonian behaviour as the shear-
rate approaches zero. In natural convection, the shear
rate is zero at the position of maximum velocity and, in

addition, approaches zero at the extremity of the momen-
tum boundary layer. However, the error is probably small
as there do not appear to be problems arising from the
use of the power-law model in pipe flow where the shear
rate is zero at the centre line. Dale and Emery [6]
measured velocity profiles in the fluid near a heated ver-
tical surface for conditions of laminar natural convection
and found that the shear rates near the surface were of
the order of 1 s7'.

The first requirement is to define appropriate Prandtl
and Grashof numbers for power-law fluids, since vis-
cosity is no longer a physical property but is shear-rate
dependent. The most satisfactory approach is to replace
the kinematic viscosity (¢/p) by a new variable with the
dimensions L*T~"'. For the power-law fluid, using the
consistency coefficient K (dimensions ML~'T~2*" and
fluid density p in combination with the distance x from
the leading edge, leads to

1
K\2=n 20-n
— X 2-n
P

as the appropriate group. On this basis the Prandtl num-
ber may be defined as:
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— X 2=n
o
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Cop
This definition has previously been used in the work of
Dale and Emery [6].

The use of x in this way is contentious in that there is
little evidence that its use takes proper account of the
variation of effective kinematic viscosity within the
boundary layer. Similarly, replacing the kinematic vis-
cosity in equation (2), the Grashof number for constant
AT is given by:

Pryn =

(12)

AT 2
Gro = POATP2 02 (13)

2
K>=
Acrivos [7] was one of the first to carry out a theoretical
analysis of natural convection in power-law fluids, and
he obtained a relationship for Nu,, equivalent to equation
(3) for Newtonian fluids. After transforming his Prandtl
and Grashof groups to be consistent with the definitions

given by equations (12) and (13), the following relation
is obtained:

Nu, = CNN[G"XNNPV’IY\IN]ﬁ (14)

In his derivation, Acrivos assumed that the Prandtl
number was much greater than unity. This does not
impose any practical limitation as the Prandtl numbers
for most non-Newtonian fluids are high. The exponent
used in equation (14) is consistent with the results of
several experimental studies with power-law fluids, for
instance that of Reilly et al. [8]. i

Equation (14) gives ¢, proportional to AT3ur1.

Again, redefining the Grashof number in terms of ¢
for use in the case of constant heat flux (cf. equation (5)
for Newtonian fluids):

24

Griw 5 (15)
K>k
and:
. 1+n cn 2(n+1)
G Pris = (Bg)gsp’ " Cix (16)

Kkl+n
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The dimensionless groups in the case of constant surface
heat flux are then related as follows:

1
Nty = Cun(Grian Pri)snss (17)

or

1
X _ - Bg)g.p' T Cpx*+ DV a2
kAT NN

Kkn+1
giving:
1
c AT K Ers 8
NN n 3n+1 - (/)) ) l+ncnkl+2n ( )
X3n+2 {g3n+2 g)p P
Thus:
CNN = ANN/BNN (19)
where:
A= | e 20
NN (ﬁg)pl+ncl1kl+2n ( )
p
and:
AT
BNN = n 3n+1 (21)

X3n+2 ({s3n+2

It will be noted that all of the above equations for power-
law fluids reduce to the corresponding equations for
Newtonian fluids when n = 1.

The results for the non-Newtonian fluids were pro-
cessed in a similar manner to those for the Newtonian
fluids, in this case by plotting AT against x3.+2, checking
that the plots were linear, and then measuring the slopes.
Results  for  the  four  shear-thinning  car-
boxypolymethylenes (Carbopols 1,2, 3 and 4) are given
in Figs 6-9. Again, a few points were omitted, as in the
work on Newtonian fluids, when values of the group
GriwPrin were either very low or very high. The lin-
earity of the plots was not as good as for the Newtonian
fluids, with some appreciable deviations near the leading
edge where conventional boundary layer theory may not
apply. Furthermore, the inclusion of an arbitrary linear
dimension, in this case x in the definition of the Prandtl
number, may lead to some discrepancies; this problem
was identified earlier in the paper.

The above procedure was repeated for each value of
the heat flux ¢, and

AT

n 3n+1
X3n+2(3n+2

( = BNN)

was checked for constancy. Cyy was then calculated from
equation (19). Values of Byy (and their 95% confidence
limits) are given in Table 2. The assumption of constant
physical properties again does not seem to lead to serious
deviations from the theoretical predictions, except for the
few points at very high values of GriPri~ which, as

mentioned above, were omitted, as in the case of New-
tonian fluids.

The physical and rheological properties of the non-
Newtonian fluids and the experimental results (with their
confidence limits) are given in Table 2. For non-New-
tonian fluids, both the Prandtl and Grashof numbers are
a function of x, and the Grashof number also depends
on the heat flux ¢,. The maximum value of GriwPrin
for each fluid is also calculated in Table 2.

4. Comparison of results with previous work
4.1. Newtonian fluids

In the present work carried out with constant surface
heat flux g, the value of the coefficient C in equation (7)
spanned the range 0.57-0.65 for the various fluids used.

The value for air is 0.57 (Table 1) and this compares
with 0.53 calculated from Sparrow’s equation (8). An
earlier experimental study by Dotson [9] on natural con-
vection from an electrically heated plate to air gave data
points consistent with those calculated from equation (8),
though no correlation was given.

For liquids, C in the present work ranges from 0.60 to
0.65 (Table 1), and has a value of 0.61 for water. Other
experimental work with water includes that of Vliet and
Liu [10] who used a plate (1 x2 m) covered on one side
with electrically heated stainless steel foil, and obtained
a value of 0.6 for C. Dale and Emery [6], using a similar
technique, have quoted C equal to 0.61, and give a com-
puted value of 0.615. Other computed values for water
are 0.61 [5], and 0.59 [11]. Churchill’s correlation of the
experimental results of other workers gives a value of
0.59. Thus all of the published values agree quite well.
Tien [12] gives a computed value for water (0.68) which
is high compared with other workers’ results (see also
Section 4.2. dealing with non-Newtonian flow). There is
little practical information available for other Newtonian
fluids.

For each of the three glycerol-water mixtures used in
this study, the computed value according to Sparrow [5]
i 0.615 and about 0.62 according to Fujii and Fujii [11].
Fujii et al. [13] carried out experiments both at constant
surface temperature and at constant heat flux over the
Prandtl number range 2 < Pr < 300. They measured heat
transfer coefficients at the external surface of a large
vertical brass tube (1000 mm tall, 60 mm id and 82 mm
od); these coefficients were estimated to be not more than
1.3% higher than for a vertical plane surface. Values of
C (for constant ¢,) were 0.59 for water and approxi-
mately 0.62 for the other liquids. Churchill and co-wor-
kers [14, 15] have correlated the experimental results of
several workers and have given C as a function of Prandtl
number. Their values for each of the fluids used in the
present work are included in Table 1, and agreement
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Fig. 6. Experimental results for Carbopol 1.

between the current work and Churchill’s correlations is motion and compared his calculated values of ¢ with

seen to be good.

For experiments carried out with constant AT, the
coefficient ¢ in equation (3) for water is given by Reilly
et al. [8] as 0.54, as compared with 0.49 calculated from
Eckert’s equation (4). Pohlhausen [16] gives 0.45 for flu-
ids with Prandtl numbers close to unity (gases). Ostrach
[4] carried out a numerical solution of the equations of

experimental data from the work of Schmidt and Beck-
mann [17] for air, of Lorenz [18] for oils with Prandtl
numbers ranging from 75 to 440, and of Saunders [19]
for mercury (Pr=0.03). Mean values of the exper-
imental and calculated values of ¢ were 0.41 for air, 0.42
for the oils, and 0.25 for mercury. More recently, Yam-
asaki and Nagahashi [20] have measured the heat transfer
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Fig. 7. Experimental results for Carbopol 2.

from a heated plate to air and have reported surprisingly
low values of the exponent of the Grashof number (0.178
for 50 < Gr, < 10°). In some of the above investigations,
the coefficients which are quoted were average values
over the whole surface. It is simply shown by integration
that the mean value should be 4/3 times the point value
and, where this is so, the appropriate correction has been
applied to provide the values quoted above. Values of ¢
for constant AT are generally somewhat lower than those
for C at constant g,.

4.2. Non-Newtonian fluids

In the present work, Cyy decreases from 0.64 to 0.49
as the degree of shear-thinning increases, as seen from
Table 2; however, the value of 0.64 for Carbopol 4
(n = 0.8) does look anomalously high in comparison with
0.61 for water (n = 1). The nearest comparable work to
that carried out in the present investigation is the wide-
ranging study of Dale and Emery [6]. They used a tech-
nique similar to that employed in the present work, with
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Fig. 8. Experimental results for Carbopol 3.

copper—constantan thermocouples spot-welded to the
back of electrically heated foil fixed to an insulating sup-
port plate. The scale of their experiments was very much
greater with their two heated vertical plates having
dimensions of 150 x 300 mm and 450 x 600 mm, re-
spectively, though it is not always clear which plate was
used in any given experiment. Although surface heat
fluxes are not always specified, they are generally in the
range 0.2-0.8 kW m~2, comparable with values used in
the present work. Water and aqueous solutions of CMC
and Carbopol (n-values 0.52-0.90) were used in their
experiments. They did not, as in the present work, show
point values of plate temperature as a function of position
and heat flux, but plotted their experimental data points
as local Nusselt number against the local value of
GrinPriy to obtain values of the exponent (which was
approximately equal to 1/(3n+2) and of the coefficient.

Cnn fell within the range 0.51-0.66, but there was no
consistent trend with n. Their numerically computed
values, based on an exponent of 1/(3n+2) are given in
Table 2, and are seen to be comparable with those in the
present work. Fujii et al. [21], employing the cylindrical
brass tube referred to earlier, made measurements at con-
stant surface heat flux for several aqueous polymer solu-
tions. The fluids were found to follow the Sutterby rheo-
logical model whose zero shear rate viscosity was used
in place of the viscosity in the relations for Newtonian
fluids.

Tien [12] has obtained a numerical solution of the
boundary layer equations for both shear-thinning and
shear-thickening power-law fluids; his relationship is
restricted to high values of Prandtl number. He treats
conditions of constant temperature difference AT and of
constant surface heat flux ¢,. The total plate length L is
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Fig. 9. Experimental results for Carbopol 4.

used as the linear dimension in the dimensionless groups,
and it is therefore necessary to include an additional
dimensionless ratio x/L in order to obtain the point value
of his Nusselt number. For constant ¢, the calculated
value of his coefficient M, (equivalent to Cyy in the
present work) ranges from 0.76 to 0.68 as n goes from
0.4 to 1.0. His computed values, which are also given in
Table 2, are high compared with both the computed and
the experimental values of Dale and Emery and with the
present results. Furthermore, they show the reverse trend,

as compared with other workers’ results, in that M,
decreases, rather than increases, as the degree of non-
Newtonian behaviour becomes less (n increasing). There
is also some confusion in Tien’s paper in that he gives
two mutually inconsistent forms for his equation, but the
most probable interpretation has been placed on this
work.

More recently, Huang and Chen [22] have carried out
a local similarity solution of the boundary layer equations
for constant AT and constant ¢,, and have shown that
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the values of both Cyy and ¢y are more sensitive to the
Prandtl number of the fluid than to the power-law index
n. The ratio of Cyy to ¢y 18 between 1.25 and 1.3 and,
for fluids with properties similar to those used in the
present work, Cyy is approximately 0.63.

Other experimental studies have been carried out with
power-law fluids at constant temperature difference AT.
For instance, Reilly et al. [8] used Carbopol solutions
(n = 0.72 and 0.89), and confirmed the value of 1/(3n+1)
for the exponent in equation (14). Their values of the
coefficient, however, related to the average value of the
Nusselt number over the surface rather than to the point
value.

5. Conclusions

Measurements of heat transfer by laminar natural con-
vection have been made using a small vertical plate
(90 x 79 mm), electrically heated so as to provide a uni-
form heat flux over the surface. The vertical temperature
profile was measured by thermocouples spot-welded to
the rear face of the heating foil. The experimental tech-
nique had already been validated in work on forced con-
vection in which excellent agreement had been obtained
between the temperature profiles measured with this
element and those calculated using a finite-element based
solution of the complete mass, momentum and energy
conservation equations.

Experiments were carried out with a range of New-
tonian fluids including air, water and aqueous glycerol
solutions, giving a 10 000-fold range of viscosities, a 1000-
fold range of densities and a 2500-fold range of Prandtl
numbers. In addition, the effects of non-Newtonian
behaviour were studied using polymer solutions with
power-law rheology, covering n values from 0.48 to 0.81.
Thus the effects of physical and rheological properties
have been studied over an extremely wide range of values.

The experimental results were analysed by plotting
local temperature difference AT against x3.+2 (x°? for
Newtonian liquids). The resulting linear relationships
provided confirmation of the theoretical predictions,
based on boundary layer theory. By using a range of
values of surface heat fluxes ¢,, the constancy of the group

AT AT
( for Newtonian fluids)
n 3n+1 x40.2 0.8

X3n+2(3n+2 ¥ 4s

was established, thus confirming the predicted depen-
dence on heat flux. Values of the coefficients C for New-
tonian fluids, equation (7), and Cyy for non-Newtonian
fluids, equation (17), were in the range 0.49-0.65, in line
with both the computed and experimental results of pre-
vious workers.
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